Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest.
نویسندگان
چکیده
Recent studies have demonstrated large amplitude spontaneous fluctuations in functional-MRI (fMRI) signals in humans in the resting state. Importantly, these spontaneous fluctuations in blood-oxygenation-level-dependent (BOLD) signal are often synchronized over distant parts of the brain, a phenomenon termed functional-connectivity. Functional-connectivity is widely assumed to reflect interregional coherence of fluctuations in activity of the underlying neuronal networks. Despite the large body of human imaging literature on spontaneous activity and functional-connectivity in the resting state, the link to underlying neural activity remains tenuous. Through simultaneous fMRI and intracortical neurophysiological recording, we demonstrate correlation between slow fluctuations in BOLD signals and concurrent fluctuations in the underlying locally measured neuronal activity. This correlation varied with time-lag of BOLD relative to neuronal activity, resembling a traditional hemodynamic response function with peaks at approximately 6 s lag of BOLD signal. The correlations were reliably detected when the neuronal signal consisted of either the spiking rate of a small group of neurons, or relative power changes in the multi-unit activity band, and particularly in the local field potential gamma band. Analysis of correlation between the voxel-by-voxel fMRI time-series and the neuronal activity measured within one cortical site showed patterns of correlation that slowly traversed cortex. BOLD fluctuations in widespread areas in visual cortex of both hemispheres were significantly correlated with neuronal activity from a single recording site in V1. To the extent that our V1 findings can be generalized to other cortical areas, fMRI-based functional-connectivity between remote regions in the resting state can be linked to synchronization of slow fluctuations in the underlying neuronal signals.
منابع مشابه
Mapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state
Synchronized low-frequency fluctuations in the resting state functional MRI (fMRI) signal have been suggested to be associated with functional connectivity in brain networks. However, the underlying mechanism of this connectivity is still poorly understood, with the synchronized fluctuations could either originate from hemodynamic oscillations or represent true neuronal signaling. To better int...
متن کاملOngoing physiological processes in the cerebral cortex
Functional magnetic resonance imaging (fMRI) has revealed that the human brain undergoes prominent, regional hemodynamic fluctuations when a subject is at rest. These ongoing fluctuations exhibit distinct patterns of spatiotemporal synchronization that have been dubbed "resting state functional connectivity", and which currently serve as a principal tool to investigate neural networks in the no...
متن کاملطبقهبندی بیماری پارکینسون بر مبنای شاخصهای درون-ناحیهای و بین-ناحیهای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت
Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...
متن کاملVery slow activity fluctuations in monkey visual cortex: implications for functional brain imaging.
We examined fluctuations in band-limited power (BLP) of local field potential (LFP) signals recorded from multiple electrodes in visual cortex of the monkey during different behavioral states. We asked whether such signals demonstrated coherent fluctuations over time-scales of seconds and minutes, and would thus serve as good candidates for direct comparison with data obtained from functional m...
متن کاملWidespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation.
To what extent does the visual system's activity fluctuate when no sensory stimulation is present? Here, we studied this issue by examining spontaneous fluctuations in BOLD signal in the human visual system, while subjects were placed in complete darkness. Our results reveal widespread slow fluctuations during such rest periods. In contrast to stimulus-driven activity, during darkness, function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 29 7 شماره
صفحات -
تاریخ انتشار 2008